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Abstract

Two popular approaches for modeling social evolution, evolutionary game theory and quantitative 
genetics, ask complementary questions but are rarely integrated. Game theory focuses on 
evolutionary outcomes, with models solving for evolutionarily stable equilibria, whereas 
quantitative genetics provides insight into evolutionary processes, with models predicting short-
term responses to selection. Here we draw parallels between evolutionary game theory and 
interacting phenotypes theory, which is a quantitative genetic framework for understanding social 
evolution. First, we show how any evolutionary game may be translated into two quantitative 
genetic selection gradients, nonsocial and social selection, which may be used to predict 
evolutionary change from a single round of the game. We show that synergistic fitness effects 
may alter predicted selection gradients, causing changes in magnitude and sign as the population 
mean evolves. Second, we show how evolutionary games involving plastic behavioral responses 
to partners can be modeled using indirect genetic effects, which describe how trait expression 
changes in response to genes in the social environment. We demonstrate that repeated social 
interactions in models of reciprocity generate indirect effects and conversely, that estimates of 
parameters from indirect genetic effect models may be used to predict the evolution of reciprocity. 
We argue that a pluralistic view incorporating both theoretical approaches will benefit empiricists 
and theorists studying social evolution. We advocate the measurement of social selection and 
indirect genetic effects in natural populations to test the predictions from game theory and, in 
turn, the use of game theory models to aid in the interpretation of quantitative genetic estimates.

Subject area:  Quantitative genetics and Mendelian inheritance
Keywords:  evolutionary game theory, hawk–dove game, indirect genetic effects, interacting phenotypes, reciprocal altruism, 
social selection
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Introduction

Social interactions are ubiquitous in nature (Frank 2007). In nearly 
every species, conspecifics interact in some way during their life 
cycle in contexts such as territoriality, mating, and parental care, and 
these social interactions can have profound implications for evolu-
tion (West-Eberhard 1979, 1983; Moore et al. 1997; Frank 1998). 
Darwin (1859) realized the importance of social context for evo-
lution early on and proposed the mechanisms of sexual selection 
and family-level selection to account for elaborate courtship displays 
and nonreproductive castes in social insects, respectively. However, 
when theoretical population genetics began to develop in the twen-
tieth century to provide a mathematical basis for Darwin’s theory, it 
was slow to incorporate social evolution. Stalwarts of the Modern 
Synthesis like R. A.  Fisher (1930) and Haldane (1932) described 
some scenarios involving social evolution qualitatively but did not 
offer a mathematical analysis (Karlin and Matessi 1983).

In the 1960s, behavior began to be viewed separately given its 
unique property as a both a target and agent of selection, attracting 
the attention of formal mathematical theory. Hamilton’s (1963, 
1964a, 1964b) seminal work, which showed how genetic relatedness 
and social fitness effects combine to predict the evolution of social 
traits, catalyzed the development of the mathematical theory of so-
cial evolution and the fields of behavioral ecology and sociobiology 
in the decades to follow. Hamilton’s early models of the evolution of 
altruistic behavior were explicitly genetic, and his concept of inclu-
sive fitness involved viewing selection through what was later termed 
the “gene’s eye view” (Dawkins 1976). However, later developments 
in social evolution theory often ignored genetics and relied on the 
“phenotypic gambit” (Grafen 1984), the assumption that the ap-
proach to phenotypic evolutionary optima is usually unconstrained 
by genetics (Eshel 1996). The most influential theoretical approach 
to phenotypic social evolution was evolutionary game theory and its 
central concept, the evolutionarily stable strategy (ESS) (Maynard 
Smith and Price 1973; Maynard Smith 1982; Dugatkin and Reeve 
1998; Hofbauer and Sigmund 1998; McElreath and Boyd 2007; 
McNamara and Leimar 2020). Evolutionary game theory offered 
a powerful approach to predict evolutionary outcomes when indi-
viduals interact, particularly in the presence of frequency-dependent 
selection, was widely adopted by behavioral ecologists (Krebs and 
Davies 1978) and continues to be influential in behavioral research 
(McNamara and Leimar 2020).

In the 1980s and 1990s, a body of theory incorporating explicit 
genetic considerations into social evolution models began to be de-
veloped. Lande (1980, 1981) and Kirkpatrick (1982) both formal-
ized Fisher’s model of sexual selection and showed that the genetic 
correlations that arise between sexually selected traits and mating 
preferences can sometimes drive runaway evolution. Cheverud 
(1984), Lynch (1987), and Kirkpatrick and Lande (1989) incorp-
orated maternal effects, which had long been studied by quantita-
tive geneticists (Dickerson 1947; Willham 1963, 1972; Falconer 
1965), into general evolutionary models. Echoing earlier work by 
Griffing (1967, 1977, 1981), Moore et al. (1997) extended maternal 
effects models to accommodate generalized social interactions be-
tween individuals, including unrelated individuals. Such “interacting 
phenotype” models depend on “indirect genetic effects” (IGEs), the 
modification of an individual’s phenotypic expression in response 
to genetically variable traits in a social interactant. IGEs, which are 
analogous to genetic maternal effects but which arise between any 
interacting conspecifics, may drastically alter responses to selection 
(Moore et al. 1997; Wolf et al. 1998; McGlothlin et al. 2010).

Another key aspect of quantitative genetic models of social evo-
lution is social selection, which is caused when one individual’s traits 
affect the fitness of another and is thus also amenable to quantitative 
genetic modeling (Wolf et al. 1999). The term “social selection” has 
been used in different ways by many authors (West-Eberhard 1979, 
1983, 2014; Roughgarden et  al. 2006; Roughgarden 2012; Lyon 
and Montgomerie 2012), focusing on different behavioral mech-
anisms and contexts (e.g., competition for social partners versus 
negotiation of social dynamics). Common to all conceptions of so-
cial selection is that the fitness of a focal individual is a function 
of its social environment, which includes the traits of its partners. 
In quantitative genetics, social selection can be modeled as a selec-
tion gradient measuring the fitness effect of social traits on the fit-
ness of a focal individual (Wolf et al. 1999), which is equivalent to 
neighbor-modulated or group-level selection (Queller 1992; Bijma 
et al. 2007). Regardless of how it is represented, social selection may 
lead to evolutionary change when related individuals interact or in 
the presence of IGEs (Bijma and Wade 2008; McGlothlin et al. 2010; 
Akçay and Van Cleve 2012).

Despite the long tradition of studying social evolution via evolu-
tionary game theory and quantitative genetics, the two frameworks 
have remained mostly separate, at least in practice. This divide has 
persisted in part because the goals of the two approaches differ 
slightly. While game theory models usually focus on solving for an 
equilibrium ESS (Maynard Smith 1982; McNamara and Leimar 
2020), the goal of a quantitative genetic model of social evolution is 
usually to develop predictions for short-term evolutionary response 
to selection (Lande 1980; Moore et al.1997). Yet this apparent dif-
ference masks a deep complementarity. Solving for an ESS requires 
writing equations for short-term evolutionary change and calcu-
lating what phenotypes can resist it. Quantitative genetics is typically 
concerned with changes in trait values without regard to whether 
such change is near or far from an evolutionary equilibrium, but 
can also be used to predict which traits will be stable in the face of 
such change. Conversely, evolutionary game theory places emphasis 
on modeling the behavioral processes that result in differential fit-
ness outcomes, while quantitative genetics remains largely agnostic 
about such processes. Thus, although evolutionary game theory and 
quantitative genetics usually differ in emphasis, they fundamentally 
describe the same processes. A  synthesis of the 2 frameworks can 
provide general insight into social evolution by combining models 
that focus on predicting equilibria with those that describe the pro-
cess required to reach such equilibria (Moore and Boake 1994).

Here we demonstrate parallels between evolutionary game 
theory and quantitative genetics that are not widely appreciated 
in social evolution. Our treatment complements earlier syntheses 
(Aoki 1983, 1984; Gomulkiewicz 1998; Lion 2018; Lehtonen 2018; 
Queller 1992, 2011; Abrams et al. 1993; Taylor 1996), but differs in 
that we aim to explicitly incorporate the parameters of ESS models 
into interacting phenotype theory and vice versa. First, we express 
fitness effects in a general evolutionary game in terms of quantitative 
genetic selection gradients, showing how payoff matrices relate to 
parameters that may be estimated in natural populations. Next, we 
consider how both short-term response to selection and long-term 
evolutionary outcomes may be affected by the presence of indirect 
genetic effects. We discuss 2 specific games, the prisoner’s dilemma 
and the hawk–dove game, as examples. Finally, we discuss the rele-
vance of the IGE parameter ψ, which measures the strength and dir-
ection of phenotypic social interactions, for evolutionary games that 
include reciprocity (Trivers 1971; Axelrod and Hamilton 1981).
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Game Theory and Social Selection

In this section, we connect fitness effects in evolutionary game theory 
to the two selection gradients in interacting phenotype theory, the 
nonsocial (or direct) selection gradient βN, which measures the ef-
fects of an individual’s traits on its own fitness, and the social (or in-
direct) selection gradient βS , which measures the effects of the traits 
of others on an individual’s fitness (Wolf et al. 1999). Throughout, 
we assume that individuals interact in dyads, but our results can 
easily be extended to larger groups. Our treatment builds on pre-
vious work by Taylor (1996), Taylor and Frank (1996), Queller 
(2011), Van Cleve (2017), Araya-Ajoy et al. (2020), and others, but 
we provide additional insights into the estimation of parameters in 
wild populations.

In game theory, the fitness costs and benefits of an evolutionary 
game are described by the payoff matrix, which defines the fitness 
consequences of an individual employing (or “playing”) a particular 
strategy in a given social context. The values in the payoff matrix can 
be written in the form V (z|z ′ ), which represents the expected payoff 
of an individual playing strategy z against an individual (or group) 
playing strategy z ′. In a simple two-player game where an individual 
may take one of two strategies, we can define z as a binary trait where 
one strategy is z = 1, which corresponds to a player using strategy 
“1” with probability one, and the second strategy is z = 0, which 
corresponds to a player using strategy “0” with probability one and 
strategy “1” with probability zero. A general payoff matrix that can 
accommodate a wide variety of two-player games can be written as

V (1|1) = π1 + π2 + π3 V (1|0)= π1

V (0|1) = π2 V (0|0)= 0.
 (1)

Here, the parameter π1 represents the additive payoff to the focal 
individual of playing strategy z = 1 and π2 represents the addi-
tive payoff of facing strategy z ′ = 1. Parameter π3 represents 
nonlinearity or synergy, that is, the additional payoff that accrues 
only when both players play strategy “1.” The payoffs in Equation 
1 are assumed to be normalized with respect to the payoff V (0|0),  
which is set to zero. This decision is arbitrary; fitness payoffs may 
be written by normalizing with respect to any of the other cells of 
the matrix. In this way, this notation can encompass any two-player, 
two-strategy game (Queller 2011; Van Cleve 2017). The payoffs in 
Equation 1 can be used to write a general equation for the absolute 
fitness of an individual:

W(z, z ′ ) = W0 + (π1 + π2 + π3)zz ′ + π1z(1− z ′ )

+ π2(1− z)z ′ = W0 + π1z+ π2z ′ + π3zz ′ ,
 (2)
where W0 represents baseline fitness outside the context of the game. 
Using this fitness function, we can interpret z as before, a binary 
trait with values zero and one, or allow z to be a continuous trait 
with values within the interval [0, 1] where z is the probability of 
using strategy “1” and 1− z is the probability of using strategy “0”. 
Furthermore, we can use the fitness function W (z, z ′ ) to calculate 
all the possible ESSs of the game using standard methods (Maynard 
Smith 1982; Hofbauer and Sigmund 1998).

Like evolutionary game theory, interacting phenotype theory 
also calculates fitness in a social context but using the notation and 
tools of quantitative genetics. Specifically, the interacting phenotype 
theory fitness function allows one to partition total selection into 
individual and socially mediated components (Wolf et  al. 1999). 

Quantitative genetic models often start with relative fitness, which 

is defined as absolute fitness divided by mean fitness or w = W
W̄. For 

a one-trait model, relative fitness is modeled as

w(z, z ′ ) = w0 + βNz+ βSz ′ + ε, (3)

where w0 is an intercept, z represents the phenotype of the focal in-
dividual, z ′ represents the phenotype of its social partner, and ε is 
a normally distributed error term with an expectation of zero. The 
effect of the focal phenotype on fitness is by the nonsocial selection 
gradient (βN), and the effect of the social phenotype is captured by 
the social selection (βS). These selection gradients are partial regres-
sion coefficients and represent partial fitness effects, i.e., the effect of 
a given phenotype on fitness while holding the other constant. When 
group means are used in place of z ′, this partitioning is identical to 
the approach known as contextual analysis (Goodnight et al. 1992; 
Heisler and Damuth 1987), and when that group mean excludes the 
focal individual, it is identical to the neighbor model of group selec-
tion (Lehtonen 2020; Okasha 2004, 2006). Nonsocial and social se-
lection gradients can be estimated using a simple modification of the 
multiple regression method of Lande and Arnold (1983) and thus 
provide a useful tool for studying social evolution in natural popula-
tions (Wolf et al. 1999; Formica et al. 2011).

Fitness is the common currency of the two bodies of theory and so 
provides a translation between them. We first assume that the payoff 
matrix (Equation 1), which we have defined in terms of discrete binary 
strategies, can be used to define a continuous surface of fitness ef-
fects defined by continuous traits z and z ′. These could represent the 
“mixed strategies” of game theory, where z represents the probability 
of performing strategy 1.  In this case, the payoff matrix (Equation 
1)  would represent the four corners of a bounded fitness surface. 
However, z and z ′ could also represent other continuous traits that 
take values beyond the interval [0, 1]. In the latter case, the four points 
in the payoff matrix now define a fitness function that may be used to 
calculate the fitness of individuals with any trait value.

The selection gradients in Equation 3 can now be calculated by 
differentiating Equation 2 with respect to focal and social pheno-
types. Following Taylor and Frank (1996, see also Lande and Arnold 
1983; Charlesworth 1990; Iwasa et al. 1991; Taper and Case 1992; 
Abrams et al. 1993; Taylor 1996), the regression coefficients can be 
expressed as

βN = 1
W̄E

(
∂W
∂z

)
and
βS =

1
W̄E

(
∂W
∂z ′

) (4)

when we assume that z and z ′ are jointly normally distributed. 
Equations 4 represent expectations of partial derivatives of the ab-
solute fitness function divided by population mean fitness. These 
expectations may be approximated by evaluating derivatives at the 
population mean, or

βN ≈ 1
W̄

∂W
∂z |z=z ′ =

−
z

and
βS ≈ 1

W̄
∂W
∂z ′ |

z=z ′ =
−
z
.

 (5)

These expressions are exact when W(z, z ′ ) is at most quadratic in 
either z or z ′, as is the case in Equation 2, and they hold more gener-
ally whenever the phenotypic variance is small (Abrams et al. 1993) 
or when selection is weak (Taylor 1996).
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Using Equations 2 and 5, we can calculate the nonsocial and so-
cial selection gradients in the two-player game defined by Equation 
1 as

βN = 1
W̄

(
π1 + π3

−
z
)

and

βS = 1
W̄

(
π2 + π3

−
z
)
.

 (6)

where the average fitness is

W̄ = W0 + (π1 + π2)
−
z + π3(

−
z 2 + Cov(z, z ′ )). (7)

The covariance term in Equation 7, which will be nonzero when 
individuals are related, when individuals assort on the basis of 
phenotype, or when there are indirect genetic effects (i.e., when one 
individual’s phenotype is adjusted in response to its social partner), 
is equal to the interactant covariance (Cij ′

) of Wolf et al. (1999).
Equations 6–7 show that the nonsocial and social selection gradi-

ents from interacting phenotype theory are not necessarily constant 
across generations but rather should change as the population mean 
changes. In the absence of nonlinear payoffs (π3 = 0), these changes 
will derive solely from changes in mean fitness (Equation 7), which 
will not influence the signs of the selection gradients and will be 
small when selection is weak. However, in any evolutionary game 
with nonlinear payoffs (π3 �= 0), both nonsocial and social gradients 
may change in sign as well as magnitude (Figure 1).

When nonlinear fitness effects are absent or weak (i.e., when 
|π3| < π1 and |π3| < π2), the interpretation of nonsocial and social 
selection gradients does not differ from the interpretation of the 
additive terms in the payoff matrix. For example, a trait that repre-
sents a cost to self (π1 < 0 in the payoff matrix will always result in a 
negative nonsocial selection gradient (Figure 1). However, when fit-
ness effects are strongly synergistic (i.e., when |π3| > π1 or |π3| > π2

), our interpretations of the two types of parameters may diverge. 
A strongly positive π3 coupled with a negative π1, for example, may 
result in a nonsocial selection gradient that is negative when the trait 

mean is low and positive when the trait mean is high (Figure 1). The 
interpretation here depends on perspective. A game theorist might 
view this trait as lacking “strategic dominance” (Binmore 2007) 
since the cost of switching strategies, V (1|1)− V (0|1) = π1 + π3 
and V (1|0)− V (0|0) = π1, have different signs, whereas a quantita-
tive geneticist would note that the trait changes from representing a 
net cost to a net benefit depending on the trait mean.

Our results show that interacting phenotypes models potentially 
include two types of frequency dependence. The first occurs when-
ever there is social selection, i.e., whenever π2 and βS  are nonzero. 
In this case, the fitness of a given phenotype depends upon the in-
dividual (or individuals in a group model) with which it interacts 
(Wolf et al. 1999). This contribution can be called “local frequency 
dependence” because it creates variance in fitness across pairs (or 
groups) of interactants existing in the same population at the same 
time. Local frequency dependence aligns with the concept of fre-
quency dependence in game theory and population genetics, which 
is usually defined to include any type of socially dependent fitness 
effect (McNamara and Leimar 2020). Local frequency depend-
ence should be present in any evolutionary game or social selection 
model. The second type occurs when the sign of selection gradi-
ents changes across generations with the trait mean as in Figure 
1. This contribution can be called “global frequency dependence” 
because the total effect of selection on the trait, ∆

−
z, depends upon 

the makeup of the whole population. Global frequency dependence 
aligns with the definition of frequency-dependent selection in quan-
titative genetics, that is, a change in the direction of selection with 
a change in the phenotypic mean (Lande 1976). Global frequency 
dependence will arise only when nonlinear payoffs (π3) exist.

Previous interacting phenotype models have obscured the con-
tribution of nonlinear fitness effects, which has been cited as one of 
their primary limitations (Westneat 2012; Araya-Ajoy et al. 2020). 
As noted by Araya-Ajoy et  al. (2020), one of the most important 
consequences of nonlinear fitness effects is that they can lead to 
evolutionary feedback. In other words, because the strength of se-
lection may change with the trait mean in the presence of synergy, 

Figure 1. Dependence of nonsocial (βN) and social (βS) selection gradients on the trait mean (
−
z) and the nonlinear payoff π3. Trait z is costly to self (π1 = −0.5) but 

beneficial to others (π2 = 1.0). Average fitness is calculated using Equation 7 where W0 = 1 and the covariance term is set to zero. When synergistic effects are 
small (π3 < π1), the selection gradients change in magnitude with 

−
z  but do not change in sign. When fitness effects are synergistic enough (π3 > π1), however, 

the nonsocial selection changes in sign once 
−
z  is large enough. This effect results in the trait changing from representing a net cost to self to a net benefit to self.
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the rate of evolution of a social phenotype may potentially increase 
each generation. Although the inclusion of nonlinear effects does not 
change the predictions of short-term response to selection (Moore 
et al.1997; Bijma and Wade 2008; McGlothlin et al. 2010), it is im-
portant to consider how nonlinear effects might change selection 
gradients when attempting to draw conclusions about social evolu-
tion over many generations.

An alternative approach (Queller 1985, 2011; Westneat 2012; 
Araya-Ajoy et  al. 2020) partitions selection to include a separate 
gradient (βI) that estimates the interactive (i.e., multiplicative) effect 
of focal and social traits (zz ′). In this partitioning, the three selection 
gradients take on expectations that are independent of the mean, 

with βN = 1
W̄π1, βS = 1

W̄π2, and βI = 1
W̄π3. However, we prefer the 

standard definitions of βN and βS  in Equation 6. As we will show in 
the next section, using standard definitions allows the incorporation 
of fitness effects from any evolutionary game directly into equations 
for evolutionary response (Bijma and Wade 2008; McGlothlin et al. 
2010). In addition, these definitions directly correspond to the selec-
tion gradients that would be measured in a social selection analysis 
of a natural population (Wolf et al. 1999).

With a sufficiently large dataset one could estimate nonlinear 
fitness effects in a natural population by expanding the Wolf et al. 
(1999) model to include quadratic terms (Lande and Arnold 1983; 
Phillips and Arnold 1989). Defining relative fitness as

w (z, z ′ ) = w0 + βNz+ βSz ′ +
1
2
γNN

(
z−

−
z
)2

+
1
2
γSS

(
z ′ −

−
z
)2

+ γNS

(
z−

−
z
)(

z ′ −
−
z
)
+ ε.

 (8)
has the advantage of estimating evolutionarily relevant selection gra-
dients while estimating the total curvature of the fitness surface (γij
. terms). Here, the nonsocial-social correlational selection gradient 
(γNS) capture the same fitness interaction as βI (Westneat 2012; 
Araya-Ajoy et al. 2020), while the directional gradients include all 
fitness effects relevant to evolutionary response.

Response to Selection in Evolutionary Games

One advantage of defining selection gradients in terms of the payoff 
matrix is that it enables calculation of the predicted response to se-
lection that arises from an evolutionary game. In general, the pre-
dicted response to selection for a socially influenced trait can be 
calculated from the Price (1970, 1972) equation using Equation 3 as

∆
−
z = Cov (A,w) = Cov (A, z)βN + Cov (A, z ′ )βS (9)

(Frank 1997; McGlothlin et al. 2010), where A is the total breeding 
value of trait z in an individual. This equation is useful because it par-
titions the relationship between breeding values and phenotypes (the 
two covariances) from the relationship between phenotypes and fitness 
(the two selection gradients). The two covariance terms on the right-
hand side of Equation 9 represent two types of genotype–phenotype re-
lationships. The first describes the relationship between an individual’s 
own genotype and phenotype, and the second describes whether an 
individual’s genotype is associated with phenotypes found in its social 
environment.

To calculated these covariances, we must specify a genotype–
phenotype model. One common model for the genetics of interacting 
phenotypes in quantitative genetics partitions a single phenotype z 
into the influence deriving from a focal individual’s own additive 

genetic (a) and environmental (e) contributions and the effect of a 
social partner’s phenotype (z ′ ):

z = a+ e+ ψz ′ , (10)

where ψ, which is a constant representing the importance of the so-
cial interaction for the expressed trait, theoretically ranges from −1 
to 1 for a single-trait model (Moore et al.1997). The coefficient ψ 
is a way to incorporate phenotypic responsiveness to the social en-
vironment into quantitative genetic models. Specifically, when ψ is 
nonzero, the expression of phenotype z depends in part on a re-
sponse to the trait of its social partner (Moore et al.1997). This can 
arise, for example, if the phenotype is behavioral and individuals ob-
serve and respond to each other’s behavior in real time; ψ then rep-
resents this behavioral responsiveness (Akçay et al. 2009; Akçay and 
Van Cleve 2012). The model in Equation 10 may be used to develop 
expressions for both an individual’s breeding value (A = a

1−ψ) and 
the covariances in Equation 9 (Moore et al.1997; McGlothlin et al. 
2010). Whenever z is heritable and ψ �= 0, the total covariance be-
tween breeding values and phenotype will depend upon two sources: 
direct genetic effects caused by an individual’s own genes and IGEs 
caused by the social partner’s genes and mediated by ψ.

Because the social partner’s trait is also influenced by gen-
etic, environmental, and social components, Equation 10 can be 
expanded as

z =
a+ e+ ψ (a ′ + e ′ )

1− ψ2
 (11)

where the denominator now represents the degree of feedback be-
tween the two interactants (Moore et al. 1997). Equation 11 shows 
that phenotypic expression involves two genetic effects: a direct 
genetic effect proportional to a and an indirect genetic effect (IGE) 
proportional to a ′. If relatives interact or pairs form nonrandomly, 
these effects may be correlated. We model the correlation between 
the breeding values of different individuals using a genetic related-
ness coefficient r. The predicted response to selection in the presence 
of both relatedness and IGEs can be shown to be

∆
−
z = G

(1+ rψ)βN + (r+ ψ)βS
(1− ψ) (1− ψ2)

 (12)

(McGlothlin et al. 2010; cf. Akçay and Van Cleve 2012), where G 
represents additive genetic variance.

An equally valid alternative to this trait-based model partitions 
the total breeding value (A) of an individual trait into direct and in-
direct components without reference to a specific phenotype of the 
social partner and uses variance components to predict the response 
to selection (Griffing 1967; Bijma et al. 2007; Bijma and Wade 2008; 
McGlothlin and Brodie 2009; Bijma 2014). While trait-based IGE 
models, such as the one we develop here, decompose IGEs into effects 
of specific traits, variance-component models include terms that encom-
pass all IGEs on a particular trait. We use a univariate trait-based model 
here to parallel game theory approaches, but this is easily generalizable 
to a multivariate scenario. Including effects of other traits on evolu-
tionary response requires either a variance-component model (Bijma 
and Wade 2008) or a multivariate trait-based model (Moore et al.1997).

Equation 12, when combined with our previous definitions of 
nonsocial and social selection gradients (Equation 6), allows the 
prediction of short-term evolutionary change from a wide variety 
of evolutionary games. In addition, the incorporation of both re-
latedness and phenotypic responsiveness into Equation 12 allows 
us to determine when these phenomena may affect both short-term 
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evolutionary response and predicted evolutionary outcomes. In par-
ticular, ψ may be useful for modeling any game where strategies 
are allowed to change in response to the strategy of the opponent. 
Such phenotypic responsiveness is known variously as “(direct) reci-
procity” (Trivers 1971; Axelrod and Hamilton 1981; Alexander 
1985) or “negotiation” (McNamara et al. 1999). An alternative ap-
proach to the one we take here is to explicitly model how respon-
siveness affects the trait value over repeated rounds of interaction 
and incorporate those effects into the payoff matrix (Van Cleve and 
Akçay 2014; Van Cleve 2017). The variable used by Van Cleve and 
Akçay (2014) and Van Cleve (2017) to quantify responsiveness (ρ) 
is conceptually similar but not identical to ψ(Akçay and Van Cleve 
2012). An advantage of our current approach is that it partitions the 
effect of selection on trait values from genetics, which is consistent 
with standard quantitative genetic theory and thus allows for the es-
timation of relevant parameters using quantitative genetic methods.

Equations (9–12) can also be used to predict the direction of evo-
lution and evolutionary equilibria for a given model by setting ∆

−
z 

equal to zero and rearranging. For example, in the presence of both 
relatedness and IGEs, 

−
z should evolve in a positive direction when

βN + r+ψ
1+rψβS > 0 (13)

and should be at equilibrium when

βN + r+ψ
1+rψβS = 0

(McGlothlin et al. 2010, 2014; Akçay and Van Cleve 2012). In most 
cases, this approach should predict the ESS for a given evolutionary 
game (Taylor and Frank 1996). To explicitly illustrate how game 
theory and interacting phenotypes models can apply to the same be-
havioral scenarios, we analyze two simple evolutionary games using 
this approach below.

Example 1: Prisoner’s Dilemma
One classic evolutionary game is the prisoner’s dilemma (Rapoport 
and Chammah 1965), which is defined by the matrix

V (C|C) = b− c+ d V (C|D) = −c
V (D|C) = b V (D|D)= 0.

 (14)

In this game, each player may either cooperate (C) with the other 
player, in which case it pays a fitness cost c, or defect (D), acting in 
its own interest and paying no fitness cost. Interacting with a cooper-
ator leads to a fitness benefit b. The synergy term d is greater than 
zero when simultaneous cooperation yields additional fitness bene-
fits. Most evolutionary games can be recovered from the prisoner’s 
dilemma by varying the signs and relative magnitudes of b, c, and 
d (Van Cleve and Akçay 2014; Van Cleve 2017). Indeed, the payoff 
matrix represented in Equation 14 is identical to that in Equation 1 
except for signs.

Using Equation 5, the nonsocial and social selection gradients in 
this game are

βN =
1
W̄

(
−c+ d

−
z
)

 (15)

and

βS =
1
W̄

(
b+ d

−
z
)

 (16)

As expected, nonsocial and social selection are proportional to 
the costs and benefits of cooperation in the absence of synergy 
(d = 0) and depend on the population mean in the presence of 
synergy (d �= 0). In the absence of IGEs and relatedness, evolution 
depends only upon nonsocial selection, and cooperation will al-
ways be disfavored in the absence of positive synergy. Even with 
positive synergy, however, cooperation is unable to increase when 
−
z = 0.

Adding IGEs and relatedness allows us to derive a version of 
Hamilton’s rule that includes synergy. Cooperation will increase (i.e., 
∆

−
z > 0) when

−c+ r+ ψ

1+ rψ
b+

(1+ r) (1+ ψ)

1+ rψ
d
−
z > 0. (17)

As in previous versions of Hamilton’s rule that did not explicitly 
incorporate synergy (McGlothlin et al. 2010, 2014), Equation 17 
shows that relatedness and IGEs have completely symmetrical ef-
fects on the evolution of cooperation (Akçay and Van Cleve 2012; 
Van Cleve and Akçay 2014; Van Cleve 2017). The influence of fit-
ness synergy on the evolution of altruism has been discussed at 
length elsewhere (e.g. Queller 1985). Two additional insights arise 
from including IGEs into this model, however. First, when ψ > 0
, IGEs may facilitate the invasion of cooperation when 

−
z is close 

to zero by creating a phenotypic covariance between interactants 
and increasing the effect of the b term (i.e., the linear component 
of social selection). Second, IGEs may act in concert with related-
ness to enhance the effects of positive synergy as cooperation and 
−
z increase.

Example 2: The Hawk–Dove Game
We next consider the classic hawk–dove game, which involves two 
conspecifics competing over a resource (Maynard Smith and Price 
1973; Maynard Smith 1982). When two doves meet, they divide the 
resource or decide the contest without aggression. When two hawks 
meet, they fight to determine the contest, with one hawk winning 
and the other paying a cost. When a hawk meets a dove, the dove 
flees and the hawk takes the resource. In this game, the payoffs can 
be expressed as

V (H|H) = v−c
2 V (H|D)= v

V (D|H) = 0 V (D|D) = v
2

 (18)

where H represents the hawk strategy, D represents the dove strategy, 
v represents the value of the resource, and c represents the cost of 
fighting over that resource. Fitness can be expressed as a function by 
equating z = 1 with a pure hawk strategy and z = 0 with pure dove:

W = W0 +
v− c
2

zz ′ + vz (1− z ′ ) + (1− z) (1− z ′ )
v
2

= W0 +
v
2
(1+ z− z ′ )− c

2
zz ′ + ε

 (19)
As before, we can translate this fitness function into selection gradi-
ents by taking partial derivatives of Equation 19, yielding

βN = v−c
−
z

2W̄ and βS =
−v−c

−
z

2W̄ . (20)

To predict evolutionary rates and solve for equilibria, we substitute 
Equation (20) into Equation (12). In the absence of IGEs and re-
latedness, the result reduces to
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∆
−
z = GβN = G

v− c
−
z

2W̄
. (21)

Solving for equilibrium,

ẑ =
v
c
, (22)

which corresponds to the classic ESS for the continuous hawk–dove 
game (Maynard Smith 1982). Naturally, this mixed-strategy equilib-
rium is stable only when v < c(so that z < 1). When v ≥ c, z from 
Equation (22) is unstable, and 

−
z will evolve to its boundary condi-

tion at 
−
z = 1, which is the ESS in the hawk–dove game when hawk 

is the dominant strategy.
Now imagine that the two individuals are allowed to adjust their 

behavior in response each other. Such negotiation can be modeled 
as an IGE. By substituting Equations (20) into Equation (12) and 
setting only relatedness to zero, we find a predicted response to 
selection of

∆
−
z = G

v− c
−
z − ψ

(
v+ c

−
z
)

2W̄ (1− ψ) (1− ψ2)
. (23)

We can solve for the equilibrium phenotype by setting the 
left-hand side equal to zero and solving for 

−
z:

ẑ =
v (1− ψ)

c (1+ ψ)
. (24)

Equation 24 shows that phenotypic adjustment changes the pre-
dicted equilibrium of a hawk–dove game. If ψ > 0, there is posi-
tive feedback, meaning that interactants will adjust their behavior 
based on what the other does, which results in lower equilibrium 
hawkishness than predicted in the phenotypic model. This result is 
equivalent to Grafen’s (1979) result for relatedness, with ψ in place 
of r. In contrast, if ψ < 0, individuals become more hawkish when 
their opponent is more dovish, and vice versa. This results in a higher 
equilibrium hawkishness.

Indirect Genetic Effects and Reciprocity

Above, we have argued that IGEs may be used as a general way 
to model phenotypic adjustment in evolutionary games. Perhaps the 
most well-known type of phenotypic adjustment is reciprocity or re-
ciprocal altruism, first discussed by Trivers (1971). A typical model 
of reciprocity involves sequential interactions between individuals 
where memory of one or more previous interactions determines 
the action taken in the current interaction. It has been argued that 
IGEs allow quantitative genetic models to incorporate reciprocity 
(Bleakley and Brodie 2009; McGlothlin et al. 2010), but this rela-
tionship has not been made mathematically.

In evolutionary game theory, reciprocity is often modeled using a 
repeated or iterated version of the prisoner’s dilemma game (Axelrod 
and Hamilton 1981; McElreath and Boyd 2007). After meeting once 
and playing a prisoner’s dilemma, two individuals play again with 
some probability. By allowing various repeated strategies to compete 
in a computer simulation, Axelrod and Hamilton (1981) showed that 
a strong strategy in this game is tit-for-tat, where each player mimics 
its partner’s behavior from the previous round. A population that 

employs a tit-for-tat strategy can prevent the invasion of cheaters 
because an individual that cheats on the first meeting is punished in 
later iterations.

This game appears to match a typical IGE model with one 
exception. The evolutionary game theory model assumes that 
interactions are repeated and sequential, while IGE models in-
volve a single interaction with phenotypic feedback. To show the 
relationship between the two models, we can express the pheno-
types for a pair of individuals that interact sequentially using a 
quantitative genetic model in which subsequent interactions are 
included as different traits. Suppose that in the first interaction, 
two individuals express a phenotype that is unaffected by the 
other individual:

z0 = a+ e
z0 ′ = a ′ + e ′ . (25)

In Equation 25 and those that follow, the subscript refers to the 
number of times two individuals have previously met (i.e., z0 and z0 ′ 
are phenotypes for two individuals that have not previously inter-
acted). When two individuals interact again, each individual adjusts 
its phenotype based on what occurred in their last interaction. We 
use y to represent the fraction of the phenotype that is attributable 
to this adjustment, while 1− y is the fraction of the phenotype based 
on the individual’s own genes and environment. A  value of y = 1 
would be equivalent to a perfect tit-for-tat response. For simplicity, 
we assume that y is a population parameter. However, the model 
could easily be expanded to allow each individual to have its own 
value of y. Thus, at the second interaction, the two phenotypes can 
be written as

z1 = (1− y)(a+ e) + yz0 ′

z1 ′ = (1− y)(a ′ + e ′ ) + yz0.

Because all subsequent interactions follow the same form, this can 
be generalized as

zt = (1− y)(a+ e) + yzt−1
′

zt ′ = (1− y)(a ′ + e ′ ) + yzt−1.
 (26)

Now suppose that each additional interaction occurs with prob-
ability p. To make a direct comparison to the standard IGE model, 
we measure the phenotype as the average behavior across all re-
peated interactions between the two individuals. The average pheno-
type is the sum of values across all steps divided by the total number 

of interactions, (1− p)−1, or

zave = (1− p)
∞∑
t=0

ptzt. (27)

In Appendix, we show that Equation (27) can be expressed as

zave =
a+ e+ py (a ′ + e ′ )

1+ py
. (28)

The numerator in Equation 28 corresponds to the phenotypic 
definition from the standard IGE model (Equation 11), with the 
equivalency

ψ = py.

Journal of Heredity, 2022, Vol. 113, No. 1 115
D

ow
nloaded from

 https://academ
ic.oup.com

/jhered/article/113/1/109/6529932 by guest on 27 Septem
ber 2023



In other words, the interaction effect ψ is equal to the probability 
of repeated interactions multiplied by the strength of reciprocal 
response. However, the sequential model differs slightly from the 
standard IGE model; namely, there is an additional factor of (1− ψ) 
in the standard model. In Equation 28, as py approaches 1, the de-
nominator approaches 2 and the numerator approaches the sum of 
the initial values of the two interactants. This shows that stronger, 
more likely interactions cause the phenotype to resemble the average 
of the initial values of the two interactants.

To derive an equation for the response to selection in this model, 
we take the population average of Equation 28,

−
z ave =

−
a,

which shows that unlike in the standard IGE model, the population 
mean equals the mean additive genetic value. This allows us to solve 
for a response to selection by using the additive genetic value as the 
breeding value in Equation 9, yielding

∆
−
z ave = G

(r+ py)βN + (1+ rpy)βS
1+ py

, (29)

which, with ψ = py, differs from Equation 12 by a factor of 
(1− py)−2.

Equation 29 shows that the predicted response to selection when 
repeated interactions occur will be proportional to the predicted re-
sponse for a single interaction with simultaneous feedback; however, 
assuming py > 0, the rate of evolutionary change will be reduced. 
Thus, when we assume that interactions occur sequentially instead 
of simultaneously, likely a more realistic assumption, the runaway 
feedback effect that normally characterizes models with reciprocal 
IGEs (Moore et  al.1997; McGlothlin et  al. 2010) disappears. The 
response to selection still depends on both direct genetic effects and 
IGEs in a similar way, but the rate of evolution no longer spirals to 
infinity as the strength of the IGE increases.

Despite the difference in predicted evolutionary rate between the 
two models, other conclusions depend only on the numerator and 
will not differ. This allows us to use estimates of ψ to make general 
predictions about the direction of evolution no matter what model 
the interactions follow. For example, the condition for the evolution 
of reciprocity with sequential interactions can be given as a form of 
Hamilton’s rule:

βN +
r+ py
1+ rpy

βS > 0, (30)

which with ψ = py is identical to Equation 13. When non-relatives 
interact, Equation 30 simplifies to

βN + pyβS = 0,

which reproduces results from prior models of reciprocity and re-
sponsiveness (André and Day 2007; Akçay et al. 2009). Equations 
(30–31) indicate that as expected, the evolution of reciprocity de-
pends on py or approximately, ψ. The evolution of altruistic be-
havior is favored when repeated encounters with the same individual 
are more likely (higher p) and when the response more closely re-
sembles tit-for-tat (higher y). This result corresponds to the standard 
result that the evolution of reciprocity via a tit-for-tat strategy is 
favored when subsequent encounters are more likely (McElreath 
and Boyd 2007). It is important to note, however, that our model 

assumes that the parameters p and y, and consequently, ψ, are fixed, 
and conclusions may differ when ψ is allowed to evolve (André and 
Day 2007; Akçay et al. 2009; Kazancioglu et al. 2012; André 2015). 
The assumption of fixed p and y, or ψ, allows prediction of short-
term evolution.

Discussion

Our analysis highlights important connections between evolutionary 
game theory and quantitative genetic models of interacting pheno-
types. Specifically, the fitness effects that arise from the payoff matrix 
in social games translate directly into the nonsocial and social se-
lection gradients of interacting phenotypes theory from quantitative 
genetics. Various types of phenotypic modification can be modeled 
using the interaction coefficient ψ, which quantifies the strength of 
IGEs. These relationships make it straightforward to incorporate 
any type of interaction described by an evolutionary game into the 
predictive equations for evolutionary responses to selection. Thus, 
evolutionary models developed under the “phenotypic gambit” can 
be translated into explicitly genetic models simply by specifying the 
genotype–phenotype relationship typical of quantitative genetics, 
namely the partitioning of phenotype into direct and indirect genetic 
components and an environmental component.

The primary advantage of translating between game theory and 
quantitative genetics is that genetic models are typically formulated 
in terms of parameters that can be estimated in natural popula-
tions. For example, βN and βS  can be estimated in natural popu-
lations using a modification of the standard regression method of 
Lande and Arnold (1983) that incorporates social phenotypes or 
group means as predictors (Heisler and Damuth 1987; Goodnight 
et al. 1992; Wolf et al. 1999). Studies that measure social selection 
have begun to accumulate (Formica et al. 2011; Farine and Sheldon 
2015; Fisher and Pruitt 2019; Santostefano et  al. 2020), and we 
hope this work encourages empiricists studying social phenotypes 
in natural populations, particularly those whose questions are mo-
tivated by evolutionary game theory, to estimate βS  for their traits 
of interest. Such estimates may be used to parameterize payoff 
matrices, providing strong tests of predictions from game theory. 
As we note above, correlational selection gradients may also be 
incorporated to test for the presence of synergistic interactions by 
using Equation 8.

We argue that the phenotypic modification captured in evolu-
tionary games leads to IGEs, which may also be estimated in natural 
or laboratory populations. The parameters of variance-component 
models of IGEs, that is, direct and indirect genetic (co)variance 
(Bijma et al. 2007; Bijma and Wade 2008), may be estimated using 
quantitative genetic animal models (Wilson et al. 2009, 2010, 2011; 
Bijma 2010). Methods also exist to estimate ψ, either by using in-
bred lines or test strains (Bleakley and Brodie 2009) or as functions 
of variance components (McGlothlin and Brodie 2009). Estimates 
of IGEs are increasingly common, particularly in populations of do-
mestic animals (Wade et  al. 2010), and a number of studies have 
estimated IGEs specifically for behavioral traits that have often 
been analyzed using game theory, such as aggression (Wilson et al. 
2009, 2011; Saltz 2013; Alemu et al. 2014; Santostefano et al. 2017; 
Han et al. 2018; Lane et al. 2020). Despite this increased interest in 
IGEs, however, studies attempting to estimate ψ remain rare (but see 
Bleakley and Brodie 2009; Edenbrow et al. 2017). We hope that our 
results motivate empiricists to estimate this parameter more often, 
particularly when testing for the phenomenon of reciprocity.

Our results show that game theory holds lessons for quantitative 
geneticists as well. Nonsocial and social selection gradients represent 
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net fitness effects of a phenotype. As such, they are often interpreted 
as quantitative genetic analogs of Hamilton’s (1964a) costs and bene-
fits. This equivalence may be accurate in some cases, but there are 
several scenarios in which the two diverge (McGlothlin et al. 2014; 
Hadfield and Thomson 2017). As our results show, one such case 
arises when strong nonlinear fitness effects exist (see also Westneat 
2012; Araya-Ajoy et al. 2020). We urge empiricists to exercise cau-
tion when mapping selection gradients to cost and benefit terms 
from evolutionary games, particularly when the correlational selec-
tion gradient γNS is nonzero. We note that selection gradients can 
always be correctly interpreted as the effective relative fitness cost or 
benefit of a measured phenotype in the current population, and they 
can be used to accurately predict short-term evolutionary response 
of socially influenced traits (Bijma and Wade 2008; McGlothlin et al. 
2010) even when nonlinear effects are present.

The interaction coefficient ψ should also be interpreted with cau-
tion, particularly when predicting the rate of evolutionary change. 
Explicitly modeling phenotypic modification with sequential so-
cial interactions similar to prior models of direct reciprocity in the 
prisoner’s dilemma shows that the runaway feedback effects pre-
dicted by previous IGE models (Moore et al. 1997; McGlothlin et al. 
2010) often may be attenuated. However, our treatment shows that 
other conclusions of the general model hold true because the dir-
ection of evolutionary response does not change. In particular, the 
sequential interaction model leads to a version of Hamilton’s rule 
identical to that of the standard model, indicating that ψ can be used 
to predict the evolution of reciprocity. In addition, methods to esti-
mate ψ as a function of variance components are unaffected by the 
specific model of social interaction because feedback effects influence 
all variance components equally and thus cancel out (McGlothlin 
and Brodie 2009). Therefore, when it may be measured, ψ remains 
a useful estimate for the strength of reciprocity. Finally, ψ is likely 
to evolve (Chenoweth et al. 2010), which may also alter long-term 
evolutionary predictions (Akçay and Van Cleve 2012; Kazancioglu 
et al. 2012). A future contribution will address the conditions under 
which ψ will change in response to selection.

In conclusion, our results emphasize the benefits of uni-
fying models of evolutionary outcomes and evolutionary process. 
Incorporating both types of theory leads to a holistic view of so-
cial evolution on microevolutionary and macroevolutionary scales. 
Furthermore, both types of theory can contribute in different ways 
to the crucial feedback between theory and experiment. As we have 
argued, empirical quantitative genetics can estimate parameters to 
test and refine game theory models. At the same time, game theory 
can both provide conceptual context for the interpretation of theor-
etical and empirical quantitative genetic results and generate predic-
tions about potential evolutionary outcomes that inform the design 
of microevolutionary studies of natural populations. We hope that 
our results will inspire further integration of game theory and quan-
titative genetics to lead to a richer understanding of the evolution of 
social phenotypes.
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Appendix

Here we will show how to obtain Equation 28 from Equation 27. 
First, we solve for the infinite sum, which we write as zΣ. Substituting 

for the phenotype at t = 0, when only the individual’s own genes and 
environment are important (Equation 25), yields

zΣ = a+ e+
∞∑
t=1

ptzt.

Starting with t = 1 (Equation 26), the phenotype depends on a 
combination of an individual’s own genes and environment (multi-
plied by the quantity 1− y) and a response to its social partner’s 
previous phenotype (multiplied by y). Thus, the infinite series follows 
the form

zΣ = a+ e+ p (1− y) (a+ e) + pyz0 ′

+ p2 (1− y) (a+ e) + p2yz1 ′ + . . . .
 (32)

The infinite series in Equation 32 is then

zΣ = a+ e+
p (1− y) (a+ e)

1− p
+ pyz0 ′ + p2yz1 ′ + . . . .

Next, we expand the contribution of the social partner, closing 
the sum in a similar way:

zΣ = a+ e+
p(1− y)(a+ e)

1− p
+ py(a ′ + e ′ ) +

p2y(1− y)(a ′ + e ′ )

1− p
+ p2y2z0 + p3y2z1 + . . . .

This leaves a portion of the phenotype due to feedback effects, 
which can be rewritten as

zΣ = a+ e+
p(1− y)(a+ e)

1− p
+ py(a ′ + e ′ ) +

p2y(1− y)(a ′ + e ′ )

1− p
+ p2y2zΣ,

allowing us to close the entire sum as

zΣ =
a+ e+ py(a ′ + e ′ )

1− p2y2
+
p(1− y)(a+ e) + p2y(1− y)(a ′ + e ′ )

(1− p)(1− p2y2)
.

Simplifying,

zΣ =
1− py
1− p

Å
a+ e+ py (a ′ + e ′ )

1− p2y2

ã
. (33)

Now, we take the average across all interactions by substituting 
Equation 33 into Equation 27, yielding

zave = (1− py)
Å
a+ e+ py (a ′ + e ′ )

1− p2y2

ã
. (34)

Finally, Equation 34 easily simplifies to Equation 28.
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