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Mechanisms for social learning have rightly been the focus of much work in cultural evolution. But mech-
anisms for teaching—mechanisms that determine what information is available for learners to learn in
the first place—are equally important to cultural evolution, especially in the case of humans. Here, we
propose a simple model of teaching in the context of skill transmission. Our model derives the evolution-
ary cost and benefit of teaching by explicitly representing cognitive aspects of skill transmission as a
dual-inheritance process. We then show that teaching cannot evolve when its direct cost is too high.
We also show that there is an ‘‘explain-exploit” trade-off inherent to teaching: when payoffs from sharing
information are not constant, there can be an indirect cost to teaching. This gives rise to an opportunity
cost that goes beyond any direct cost that it may also entail. Finally, we show that evolution limits the
strength of teaching provided that the direct cost of teaching is an increasing function of teaching effort.
We then discuss how these factors might explain why teaching mechanisms are self-limiting, suggesting
that such mechanisms may nevertheless play an important role in the evolution of cumulative culture in
humans.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction macaque wash a potato before eating it, other macaques were
Cultural evolution—change over time in socially learned traits
(Cavalli-Sforza and Feldman, 1981; Boyd and Richerson, 1988)—is
ubiquitous in nature. Although humans seem to be unique in the
sheer number of traits that we learn from others (Mesoudi, 2011;
Henrich, 2017; Laland, 2018), non-human animals can also acquire
and maintain many traits via social learning (Laland and Galef,
2009; Bonner, 2018). Research in cultural evolution therefore often
focuses on mechanisms for social learning—that is, mechanisms
that direct when, what, and from whom to learn (Laland, 2004;
Rendell et al., 2010). But mechanisms for teaching, which deter-
mine what information is available for learners to learn in the first
place, are equally important to cultural evolution.

Following Caro and Hauser (1992), we take teaching to be a
modification in the teacher’s behavior that facilitates learning in
a naive observer with no immediate benefit (or some cost) to the
teacher. Teaching has been found in many non-human animals.
In the 1950s, for example, a troop of Japanese macaques (Macaca
fuscata) living on the island of Kōjima in Japan were reported to
wash sweet potatoes before eating (Kawamura, 1959). As potato
washing was not observed in other troops, it soon became clear
that this skill spread through social learning: after observing a
more likely to perform the same behavior in the presence of similar
food items. Other skills, such as tool handling, were subsequently
shown to likewise spread and persist through social learning
among Japanese macaques (Huffman and Quiatt, 1986). Socially
transmitted skills have also been documented in other animal spe-
cies—notable examples include termite fishing in chimpanzees
(van Lawick-Goodall, 1968; Boesch et al., 2020), prey handling in
meerkats (Thornton and McAuliffe, 2006), tool use in corvids
(Hunt, 1996), and foraging patterns among some social insects
(Franklin and Franks, 2012).

Teaching is also a crucial part of social and cultural evolution in
humans. The importance of pedagogy is clear in WEIRD societies
(Henrich et al., 2010), but a vast array of pedagogical practices
has also been documented in hunter-gatherers and other non-
Western populations (Hewlett et al., 2011; Hewlett and Roulette,
2016; Lew-Levy et al., 2020; Boyette and Hewlett, 2018; Kline
et al., 2013). Indeed, Sterelny (2012) proposes that a variety of
teaching mechanisms have long been central to the human ecolog-
ical niche: for their cooperative foraging style to thrive in a chang-
ing environment, our ancestors had to develop efficient ways to
gather and share information in social groups. In a similar vein,
Kline (2015) provides a rich taxonomy of mechanisms—from social
tolerance and opportunity provisioning to evaluative feedback and
direct instruction—that facilitate teaching across species, especially
in the case of humans.
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In the past decade or so, cognitive scientists have made a great
deal of progress in understanding the mechanisms that underlie
the capacity for teaching. For example, empirical and theoretical
work on pedagogical reasoning has shed light on the cognitive fac-
ulties that allow humans to actively share vast amounts of infor-
mation with others (Gergely et al., 2007; Shafto et al., 2012;
Shafto et al., 2014). Research in evolutionary biology has also made
important contributions, identifying conditions under which we
should expect mechanisms for teaching to evolve in both humans
and non-human animals (Thornton and Raihani, 2008; Castro and
Toro, 2014; Castro et al., 2019; Fogarty et al., 2011).

When pursued in isolation, however, both areas of research face
serious limitations. Studies in cognitive science are rarely cast in
evolutionary terms, taking the mental faculties necessary for infor-
mation sharing as a given. Conversely, work on the evolution of
teaching often proceeds on the basis of formal models that abstract
away from the intricacies of animal cognition. But to paint a full
picture of how teaching shapes cultural evolution, we must take
into account a wide range of cognitive mechanisms and explain
how they first came into being. What we need is therefore a
multi-pronged approach that integrates aspects of cognition and
evolutionary theory. However, to date no model has been proposed
to represent both cognitive and evolutionary aspects of teaching.

To remedy this issue, we propose here a simple model that inte-
grates cognitive and evolutionary aspects of teaching. Our model
represents a dual-inheritance process: individuals have the cogni-
tive capacity to acquire and share information about valuable cul-
tural traits; at the same time, the capacity to share information
about such traits with others is under control of genes that evolve
by natural selection. Although cultural evolutionary models also
make assumptions about underlying cognitive processes, these
assumptions are often very coarse-grained. For example, cultural
evolutionary models traditionally assume that individuals learn
from others by following simple rules, such as conformity or
frequency-dependent bias (Boyd and Richerson, 1988). In contrast,
our model makes more fine-grained assumptions to explicitly rep-
resent learning and teaching as a process of Bayesian updating—
see Perreault et al. (2012) for a similar approach. Our model there-
fore allows us to simultaneously study the cognitive faculties that
underpin the transmission of cultural traits and the evolutionary
dynamics that shape these cognitive faculties—for a discussion of
strengths and limitations of similar modeling techniques, see
Lewens (2015).

The paper proceeds as follows. In the next section, we present a
simple model of teaching in the context of skill transmission. Indi-
viduals can share information about the skills that they possess by
choosing data points—that is, by choosing to perform a certain
behavior in a given environment. Our model therefore represents
a skill as a set of behavior-environment pairs. In Section 3, we then
show that teaching can give rise to an opportunity cost that goes
beyond any direct cost that it may also entail: when the payoffs
that skillful individuals get from choosing data points are not con-
stant, there can be an indirect cost to teaching even if its direct cost
is null. In Section 4, we discuss how this opportunity cost can cause
teaching mechanisms to be self-limiting, suggesting that such
mechanisms may nevertheless play an important role in the evolu-
tion of cumulative culture in humans.
2. Model

2.1. Skills

To represent the transmission of socially learnt skills, our model
considers a finite number of environmental states e ¼ e1; . . . ; emf g,
a finite number of observable behaviors b ¼ b1; . . . ; bnf g, and a
2

finite number of skills s ¼ s1; . . . ; sof g. We take a skill to be a dispo-
sition to perform a certain behavior in a given environmental state.
That is, a skill corresponds to a set of possible data points
d ¼ d1; . . . ; dm�nf g, where each data point is given by di ¼ ej; bk

� �
and represents the disposition to perform a certain behavior bkð Þ
in a particular environment ej

� �
. More generally, a skill can be rep-

resented by a probability distribution over such data points. A skill
is therefore a set of behavior-environment pairs, as it disposes its
bearer to perform a single behavior in a given environmental state.
But each skill may be associated with a different behavior depend-
ing on the environment.

Our model can represent skills such as potato washing among
Japanese macaques. In this case, the presence or absence of a
potato represents different environmental states, washing or not
washing the food item corresponds to different behaviors, and
pairings such as (wash, potato) or (don’t wash, potato) are data
points. Skills consist in a set of data points—e.g., the disposition
to perform the washing behavior or not in the presence of a given
food item. In other words, individuals with the skill of potato
washing have the disposition to perform the washing behavior in
the presence of a sweet potato but not otherwise. Naive individuals
who do not possess the skill are not disposed to wash any food
item.

As another example, consider prey handling in meerkats. In this
case, the presence of harmless or potentially dangerous inverte-
brates represent different environmental states, disabling the prey
or not correspond to different behaviors, and pairings such as (dis-
able prey, scorpion) or (disable prey, beetle) are data points. Skills
again consist in a set of data points—the disposition to disable
the prey or not before consumption. Skillful individuals thus have
the disposition to disable preys that are potentially dangerous but
not otherwise, whereas naive individuals may not have the dispo-
sition to disable any prey or try to disable all prey.
2.2. Learning

For simplicity, we assume that individuals can be either skillful
or naive: skillful individuals have the disposition to perform a cer-
tain behavior in a given environmental state, and naive individuals
do not have that disposition. We also assume that naive individuals
use Bayes’ rule to learn from skillful individuals. That is, naive indi-
viduals learn a skill by updating the probability that they assign to
the skill conditional on observing a given data point. In other
words, learning takes place according to the following rule:

PL s‘jdið Þ ¼ PT dijs‘ð ÞP s‘ð ÞPo
‘¼1P

T dijs‘ð ÞP s‘ð Þ ; ð1Þ

where di represents a data point given by di ¼ ej; bk

� �
; P s‘ð Þ is the

prior probability that skillful and naive individuals assign to skill
s‘; P

L s‘jdið Þ is the probability that the naive individual assigns to
the skill upon observing data point di, and PT dijs‘ð Þ is the probability
that an individual with skill s‘ chooses data point di and thus the
probability that the skillful individual performs behavior bk in envi-
ronment ej. This equation therefore represents how the learner
acquires a skill by updating the probability that they assign to skill
s‘ upon observing data point di.

We assume that the prior probability distribution over skills is
common to both skillful and naive individuals as we take it to be
part of their innate cognitive makeup, with priors representing
how much data a naive individual would have to observe before
acquiring a given skill. When P s‘ð Þ ¼ 0, a naive individual would
therefore not acquire the skill regardless of how much data they
observed; when P s‘ð Þ ¼ 1, on the other hand, a naive individual
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would acquire the skill without observing any data so that in this
case the trait may be better thought of as innate.

2.3. Teaching

In our model, naive individuals must gather information to
learn a skill. At the same time, skillful individuals can share infor-
mation to facilitate learning. Following Shafto et al. (2012); Shafto
et al., 2014, a crucial assumption we make in our model is that
skillful individuals share information about their skill by choosing
data points. That is, skillful individuals impart their skill to others
by showing what behavior to perform in a given environment. To
represent a wide range of teaching mechanisms, we assume that
skillful individuals choose a data point—that is, what behavior to
perform in a given environment—according to the following rule:

PT dijs‘ð Þ / PL s‘jdið Þ
� �a

; ð2Þ

where PT dijs‘ð Þ is again the probability that the skillful individual
assigns to data point di; P

L s‘jdið Þ is the probability that the naive
individual assigns to the skill upon observing the data point, and
a is what we call the ‘‘teaching effort”—a parameter that controls
the mode of teaching, with 0 < a < 1. This expression states that
skillful individuals choose data points with a probability that is pro-
portional not only to their teaching effort, but also to the probability
that a naive individual would assign to the skill if they were to
observe the data point.

Eqs. (1) and (2) fully describe the learning process. To see how
the model works, we can substitute Eq. (1) into the right-hand side
of expression (2). We then normalize the expression so that the
probabilities fall in the unit interval. The probability with which
a skillful individual chooses a particular data point conditional on
their skill is then given by:

PT dijs‘ð Þ ¼
PT di js‘ð ÞP s‘ð ÞPo

‘¼1
PT di js‘ð ÞP s‘ð Þ

� �a

Pm�n
i¼1

PT di js‘ð ÞP s‘ð ÞPo

‘¼1
PT di js‘ð ÞP s‘ð Þ

� �a ; ð3Þ

where the numerator gives the probability that a learner assigns to
the skill upon observing a data point (raised to the power of the
teachers’ effort) and the denominator is simply the sum of this
quantity over all data points, thus serving as a normalizing con-
stant. This is a very general rule for teaching, stating that a skillful
individual can take into account the learner’s update rule when
choosing what data point to produce. Depending on a, the skillful
individual may also increase or decrease the probability with which
they display a particular behavior in a given environment or control
in what environment to perform a given behavior so as to modulate
the learner’s response.

For our purposes, the main quantity of interest is a—the teach-
ing effort. Different values of a represent different teaching mech-
anisms. When a ¼ 0, the skillful individual simply chooses what
data to produce at random from the set of all possible data points.
This means that the individual does not take into account how the
learner will learn from the data, nor do they use their skill for their
own benefit. In what follows, we therefore do not consider the case
of a ¼ 0 as we are interested in cases where skillful individuals
actually use their skills, either to share information with others
or for their own benefit. When a ! 0, the skillful individual
chooses data points at random from the set of all data points that
are consistent with the skill. When a ¼ 1, the skillful individual
chooses data points in direct proportion to the posterior probabil-
ity that a Bayesian learner would assign to the skill in question if
the learner were to observe the data point. The skillful individual
therefore not only chooses data points consistent with their skill,
3

but also takes into account how the learner will learn from the
data. In the limiting case where a ! 1, the skillful individual
chooses data points so as to maximize the posterior probability
that the learner would assign to the skill if the learner were to
observe the data.

For simplicity, we assume here that environmental states and
behaviors are discrete. This means that when a ¼ 0, the probability
of choosing a particular data point given any skill is 1

m�n, where
m� n is the number of all possible data points. When a! 0, the
probability of choosing data point di given skill s‘ is equal to 1

js‘ j,

where js‘j is the number of data points that are consistent with skill
s‘. And when a ¼ 1, the probability of choosing a data point
depends on how a learner following Eq. 1 would learn. Eq. 3 is
therefore a very general way to represent a variety of teaching
mechanisms, with the teaching effort a determining how helpful
to the learner the teaching mechanism will be.

2.4. An example

To illustrate, consider the following example. Suppose that
there are two possible behaviors that we represent by
b ¼ b1; b2f g. Suppose also that there are four environmental states
given by e ¼ e1; e2; e3; e4f g. There are therefore eight possible data
points, as each behavior may be performed in four different envi-
ronments. Now suppose that there are two skills given by
s ¼ s1; s2f g. Suppose further that data points
d1 ¼ e1; b1ð Þ; d4 ¼ e4; b1ð Þ; d6 ¼ e2; b2ð Þ, and d7 ¼ e3; b2ð Þ are consis-
tent with skill s1 but that the remaining data points are not. Simi-
larly, suppose that d1 ¼ e1; b1ð Þ; d2 ¼ e2; b1ð Þ; d7 ¼ e3; b2ð Þ, and
d8 ¼ e4; b2ð Þ are consistent with skill s2 but that all the other ones
are not. Skills s1 and s2 are depicted in Fig. 1; see also Table 1. If
a skill assigns a behavior in a given environmental state, the prob-
ability of that behavior given that state is 1; if the skill does not
assign that behavior to the state, the probability of that behavior
given the state is 0. Skills s1 and s2 therefore coincide in environ-
mental states e1 and e3, but come apart in e2 and e4.

To complete our model specification, we need to define initial
likelihoods. That is, we need to define the probability that a skillful
individual assigns to data points conditional on their skill when the
skillful individual does not take into account how the learner
updates the probability that they assign to the skill upon observing
the data points. This conditional distribution represents an individ-
ual’s disposition to choose data points independently of how a
learner would learn from the data and thus corresponds to the tea-
cher’s probability distribution over data points conditional on skill
before we apply fixed-point iteration to Eq. 3. Although in principle
any distribution will do, a plausible assumption to make is that in
this case an individual samples at random from the set of data
points that are consistent with their skill. For example, a Japanese
macaque that has acquired the skill of potato washing would in
this case simply behave in accordance with their skill, washing
their food if it is a potato and not washing their food it is some
other food item with equal probabilities. In the numerical example
above, this means that the initial likelihoods given skill s1 are uni-
formly distributed over the data points that are consistent with s1
so that P dijs1ð Þ ¼ 0:25 for i ¼ 1;4;6;7 and P djjs1

� � ¼ 0 for j– i. Sim-
ilarly, the initial likelihoods for skill s2 are P dijs2ð Þ ¼ 0:25 for
i ¼ 1;2;7;8 and P djjs2

� � ¼ 0 for j– i.
Second, we need the final likelihoods with which a skillful indi-

vidual chooses data points when sharing information with a lear-
ner. That is, we need a probability distribution over data points
conditional on a particular skill that takes into account the teach-
ing mechanism given by Eq. 3. Given initial likelihoods, priors,
and a particular value of a, we can derive the distribution of final
likelihoods by solving Eq. 3 through fixed-point iteration. Fixed-



Fig. 1. Example with two skills. Skills assign behaviors to environments, represented by the internal rectangles. Each behavior-environment pair consists in a data point, as
indicated by the dotted rectangles (blue for data points belonging to s1 and red for s2). Note that a data point might belong to one skill only, both skills, or none at all. For
example, data point d1, corresponding to pair e1; b1ð Þ, belongs to both skills, while d4 only belongs to s1. See Table 1 for a full accounting of data points .in this example.

Table 1
Data points for two skills. List of all available data points, the corresponding behavior-environment pair, and the skills that are consistent with them.

di ej ; bk
� �

s‘ di ej ; bk
� �

s‘

d1 e1; b1ð Þ s1; s2 d5 e1; b2ð Þ —
d2 e2; b1ð Þ s2 d6 e2; b2ð Þ s1
d3 e3; b1ð Þ — d7 e3; b2ð Þ s1; s2
d4 e4; b1ð Þ s1 d8 e4; b2ð Þ s2
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point iteration is a simple method of computing fixed points of a
function and has already been used in related models of teaching
(Shafto et al., 2014). To iterate to a fixed point, we start by plugging
the initial likelihood of a data point together with the remaining
parameters into the right-hand side of the equation. Next, we take
the likelihood value just obtained in the left-hand side of the equa-
tion and use it as the likelihood that goes into the right-hand side
of the equation in the next iteration. We then iterate this proce-
dure until the likelihood value obtained in the left-hand side of
the equation equals the likelihood value used in the right-hand
side of the equation. This value is a fixed point. Finding the fixed
points for the equation given the initial likelihoods for all the data
points gives us the final likelihoods—that is, the probability with
which a skillful individual chooses data points when taking the
learner’s behavior into account and exerting a certain teaching
effort (see Fig. 2).
Fig. 2. Example with two skills. Final likelihoods given different values of a in the
example depicted in Fig. 1. Initial likelihoods are given by random sampling of
consistent data points. Higher values of a favor sampling the data points that are
most helpful for the learner. The prior distributions over sk.ills is uniform.
2.5. Fitness

Whereas skills spread through social learning, we assume in our
model that teaching effort is under genetic control. This means that
skills evolve at a much shorter timescale than teaching effort, so
that a novel and beneficial skill will reach its equilibrium fre-
quency in the population long before natural selection can act on
the genes that control teaching effort. We also assume that teach-
ing effort is subject to multiple small-effect genes, so that it varies
continuously. We therefore consider how teaching effort affects a
continuous fitness function when the frequency of skillful and
naive individuals in the population is held constant.

In particular, we suppose that the fitness of skillful individuals
takes the following form. Skillful individuals receive a payoff pi

for performing behavior bk in environment ej. In other words, skill-
ful individuals receive a payoff pi for choosing data point
di ¼ ej; bk

� �
. The direct fitness gain to the skillful individual is then

given by
Pm�n

i¼1 PT dijs‘ð Þpi, which is the expected payoff for all data

points. As per expression 3, the term PT dijs‘ð Þ takes into account the
4

skillful individual’s mode of teaching. So the direct fitness gain to
the skillful individual depends on the teaching effort a.

By observing a skillful individual’s choice of data point, a learner
can then acquire the skill. Once learners acquire the skill, however,
they need not behave exactly as the individual from whom they
acquired the skill. This is because we assume that the teaching
mechanism of skillful individuals takes the form given in Eq. (3),
so that depending on teaching effort skillful individuals may con-
sider the learners’ behavior when choosing a data point. But we
assume that learners do not do the same: learners behave in accor-
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dance with their newly acquired skill across different environ-
ments, but they do not take into account how other learners would
learn from the data points that they choose to produce. To repre-
sent this, we let p‘ be the payoff that the learner expects to receive
after acquiring skill s‘. If learners sample at random from the set of

data points consistent with skill s‘, we have p‘ ¼
Pjs‘ j

i¼1pi
1
js‘ j.

Further, we denote by r the coefficient of relatedness between
skillful and naive individuals. While this language implies our
model is a case of kin-selection, our formulation can apply to other
cases. Specifically, the parameter r can be understood as generally
measuring the correlation between traits of skillful and naive indi-
viduals, which may be due to kinship but can also be due to other
assortment mechanisms (e.g., partner choice amongst non-kin).
Alternatively, r can also be interpreted as the return rate for an
investment made in teaching (i.e., the teaching effort): skillful indi-
viduals get a fraction r of the payoff that naive individuals receive
from learning the skill. This can be due to reciprocity or other fit-
ness interdependencies (Roberts, 2005; Barclay, 2020). Thus,
although we call r the coefficient of relatedness, it more generally
represents the degree to which skillful individuals have an interest
in the evolutionary fate of naive individuals, whether caused by
kinship, assortment, or phenotypic feedbacks.

We also assume that skillful individuals incur a direct cost c að Þ
that is function of their teaching effort a, representing the cogni-
tive or metabolic cost of taking the learners’ behavior into account.
We let c að Þ be an increasing function of the sharing effort.

Notice that because r is simply the return rate for an investment
made in teaching, our analysis does not require us to interpret
teaching as a form of altruism (a trait that is beneficial to the recip-
ient and costly to the donor). In fact, our results show that—de-
pending on r, the cost function, and the payoff structure—
teaching can be an altruistic behavior and thus be beneficial to
the recipient and costly to the donor but that it can also be a coop-
erative behavior and thus be beneficial to the recipient and to the
donor.

Putting all this together, we now let w að Þ represent the fitness
of skillful individuals as a function of their teaching effort:

w að Þ ¼
Xm�n

i¼1
PT dijs‘ð Þpi|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

direct benefit

þ rp‘

Xm�n

i¼1
PT dijs‘ð ÞPL s‘jdið Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

indirect benefit

� c að Þ
zffl}|ffl{direct cost

; ð4Þ
where the first term in the right-hand side of this equation repre-
sents the direct fitness benefit that skillful individuals accrue from
behaving in accordance with their skill, the second term represents
the indirect fitness benefit that skillful individuals receive from
learners acquiring the skill scaled by the relatedness between them,
and the third term represents the direct cost of teaching.

When the final likelihoods, priors, and payoffs are known, it is
possible to calculate the fitness of skillful individuals for any given
value of r and a. This means we can study the evolution of teaching
by analyzing the behavior of the teaching effort a in Eq. 4 under
different degrees of relatedness. We can thus determine the condi-
tions under which natural selection should or should not favor the
spread of teaching mechanism. In the next section, we state a few
results.

3. Results

We start by considering the fitness of skillful individuals who
exert minimal sharing effort, i.e., a! 0. From Eq. (4), the fitness
of skillful individuals who exert minimal sharing effort is given by:

wnull ¼ p‘ þ rp‘Pnull: ð5Þ
5

where Pnull ¼
Pm�n

i¼1 PT dijs‘ð ÞPL s‘jdið Þ is simply the probability that
naive individuals acquire the skill in the absence of any teaching
effort on the part of skillful individuals. We call expression (5) the
‘‘baseline fitness” of skillful individuals. This allows us to write
our first result, which is a version of Hamilton’s rule for sharing
effort.

Result1. If pi is a constant k for all data points di, skillful
individuals who exert positive teaching effort can invade
a population of skillful individuals where teaching effort is
absent provided that rb að Þ > c að Þ, where b að Þ ¼
p‘

Pm�n
i¼1 PT dijs‘ð ÞPL s‘jdið Þ � Pnull

� �
is the increase in the indirect

fitness benefit experienced by skillful individuals who exert
positive teaching effort.
Skillful individuals who exert positive teaching effort can
invade a population of skillful individuals with minimal teaching
effort provided that the following condition is met:

wnull < w að Þ; ð6Þ
for an a > 0.

To determine the conditions under which inequality (6) holds,
we start by observing that the direct fitness benefit that skillful
individuals receive from behavior that is consistent with their skill
is

Pm�n
i¼1 PT dijs‘ð Þpi ¼ p‘ ¼ k no matter what value of a. This is

because, by hypothesis, pi takes a constant value k for all data
points di. For the same reason, the fitness benefit that naive
individual receive from learning the skill is also p‘ ¼ k. The fitness
of skillful individuals who exert positive teaching effort is
therefore:

w að Þ ¼ kþ rk
Xm�n

i¼1

PT dijs‘ð ÞPL s‘jdið Þ � c að Þ: ð7Þ

For short, we can write p‘

Pm�n
i¼1 PT dijs‘ð ÞPL s‘jdið Þ � Pnull

� �
as b að Þ.

This is the increase in the indirect fitness benefit that skillful indi-
viduals who exert positive teaching effort accrue from the behavior
of learners who acquire the skill relative to the baseline indirect fit-
ness benefit of skillful individuals who do not exert any teaching
effort. With constant payoffs, condition (6) is now given by
kþ rkPnull < kþ rk

Pm�n
i¼1 PT dijs‘ð ÞPL s‘jdið Þ � c að Þ. Re-arranging this

expression, the condition for mutants who exert positive teaching
effort to invade a population with no teaching effort therefore
holds when:

rb að Þ > c að Þ: ð8Þ
This condition states that natural selection favors an increase in

teaching effort from a baseline with no teaching effort when the
increase in the indirect fitness benefit that skillful individuals
who exert positive teaching effort receive from naive individuals
acquiring the skill, scaled by the degree of relatedness between
them, is greater than the direct cost of teaching naive individuals.
The condition for positive teaching effort to invade therefore takes
the form of Hamilton’s rule (Hamilton, 1964; Hamilton, 1964). This
is not altogether surprising, as we assumed that there is a direct
cost to teaching and a direct benefit to the naive individuals so that
teaching turns out to be a kind of altruistic behavior (Thornton and
Raihani, 2008; Fogarty et al., 2011).

Next, we show that teaching can be altruistic even in the
absence of direct cost. When payoffs are not constant across data
points, there can be a trade-off between the direct and the indirect
fitness gain that skillful individuals receive. In this case, the evolu-
tion of teaching can be self-limiting regardless of the direct cost
that any sharing effort would entail simply because there is an
opportunity cost that is inherent to teaching.
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Result2. If pi is not constant across all data points di, skillful
individuals who exert a positive teaching effort can invade a
population of skillful individuals where teaching is absent pro-
vided that rb að Þ > cop að Þ, where cop að Þ is the opportunity cost of
teaching and it is given by cop að Þ ¼ p‘ � p að Þ þ c að Þ with p‘

defined as before and p að Þ ¼ Pm�n
i PT dijs‘ð Þpi is the payoff for

skillful individuals who exert positive teaching effort a.

To show this result, we again compare the fitness of skillful
individual who exert positive teaching effort with the baseline fit-
ness. With payoffs that are not constant, the fitness of skillful indi-
viduals with teaching effort a > 0 is given by:

w að Þ ¼ p að Þ þ rp‘

Xm�n

i¼1

PT dijs‘ð ÞPL s‘jdið Þ � c að Þ; ð9Þ

where p að Þ ¼ Pm�n
i PT dijs‘ð Þpi is the direct fitness benefit that skill-

ful individuals receive from their skill when exerting teaching effort
a.

According again to condition (6), skillful individuals who exert
positive teaching effort can invade a population of skillful individ-
uals where teaching is absent provided that:

wnull < p að Þ þ rp‘

Xm�n

i¼1

PT dijs‘ð ÞPL s‘jdið Þ � c að Þ; ð10Þ

where wnull is again given by Eq. (5) and all other quantities are
defined as before.

Again, we can write b að Þ for p‘

Pm�n
i¼1 PT dijs‘ð ÞPL s‘jdið Þ � Pnull

� �
.

We can also write p‘ � p að Þ þ c að Þ as cop að Þ, which is the opportu-
nity cost of teaching. The opportunity cost is the difference between
the direct fitness benefit to skillful individuals from behavior that is
simply consistent with their skill and the direct fitness benefit from
behaving in accordance with their skill at teaching effort a, plus the
direct cost of that teaching effort. Substituting b að Þ and cop að Þ into
Eq. (10) and re-arranging it, we obtain our result:

rb að Þ > cop að Þ: ð11Þ
This condition resembles condition (8) in stating that natural

selection favors an increase in teaching effort when the indirect fit-
ness benefit that skillful individuals receive from naive individuals
acquiring the skill, scaled by the degree of the relatedness between
them, is greater than the cost of teaching naive individuals. On the
other hand, it differs from condition (8) in that the relevant cost is
not simply the direct cost due to teaching effort. It is rather the
opportunity cost of teaching naive individuals when behavior that
is consistent with the relevant skill yields a higher payoff. The con-
trast is especially salient when c að Þ is negligible. In this case, con-
dition (8) can be met even when condition (11) is not. If this
opportunity cost is sufficiently high, condition (11) says that natu-
ral selection limits the spread of teaching even when the direct
cost of information sharing is null. But the opportunity cost may
also be null, in which case teaching is not an altruistic trait even
though it may still be cooperative if it benefits learners.

Further, it is possible to show that under some very liberal con-
ditions natural selection favors a positive but finite teaching effort.

Result3. If pi is not constant across all data points i, then skillful
individuals who exert positive but finite teaching effort can
invade a population of skillful individuals with perfect teaching
provided that the direct cost of teaching c að Þ is a strictly
increasing function of a. .

To prove this result, we start by calculating the fitness of skillful
individuals when a ! 1. We call this the ‘‘upper-bound effort” of
teaching. The fitness of skillful individuals exerting the upper-
bound effort is given by:
6

wup ¼ pup þ rp‘

Xm�n

i¼1

PT dijs‘ð ÞPL s‘jdið Þ � cup: ð12Þ

where pup and cup are the direct fitness benefit and the direct cost to
skillful individuals when their teaching effort goes to infinity. In this
limiting case, we assume that learning is as effective as it can be
since skillful individuals exert infinite teaching effort. This means
that

Pm�n
i PT dijs‘ð ÞPL s‘jdið Þ ! 1 as a ! 1. With this simplifying

assumption, we can re-write expression 12 as:

wup ¼ pup þ rp‘ � cup: ð13Þ
According again to condition (6), skillful individuals who exert a

positive but finite teaching effort can therefore invade a population
of skillful individuals with infinite teaching effort provided that:

p að Þ þ rp‘

Xm�n

i

PT dijs‘ð ÞPL s‘jdið Þ � c að Þ > pup þ rp‘ � cup; ð14Þ

This is a relatively weak requirement, since in many interac-
tions, the direct cost of teaching is likely to grow such that the cost
for ensuring that naive individuals learn with certainty is much
bigger than a finite effort cup � c að Þ. This means condition 14 does
not pose a very stringent requirement for natural selection to favor
a positive but finite teaching effort.

3.1. An example

To illustrate our results, consider again the numerical example
introduced above. Suppose that the payoffs for data points are
not constant so that some data points yield a higher payoff than
others (see Table 2). Suppose also that the direct cost that individ-
uals possessing skill s1 incur for teaching is given by c að Þ ¼ k � a.
Now suppose that k ¼ 0:05 so that the direct cost of teaching is
very high. In this case, the optimal a is zero for all values of r
and thus skillful individuals with a positive a cannot invade a pop-
ulation of individuals exerting no teaching effort (Fig. 3, left).

Now suppose that k ¼ 0:01 so that the direct cost of teaching is
non-negligible but not very high. In this case, skillful individuals
with a positive but finite teaching effort can invade a population
of skillful individuals exerting no teaching effort, since the optimal
a is positive but finite—provided, of course, that r is sufficiently
high (Fig. 3, center).

But suppose now that k ¼ 0 so that the direct cost of teaching is
null. In this case, teaching can evolve depending on the value of r.
When r ¼ 1:0, for example, the fitness of skillful individuals who
exert no teaching effort is w 0ð Þ ¼ 2:3. But the fitness of skillful
individuals who exert a very high teaching effort (e.g. a ¼ 10) is
w að Þ ¼ 2:44. When r is high, it is therefore optimal for skillful indi-
viduals to invest as much effort in teaching as possible—provided,
of course, that there is no direct cost in doing so. When r ¼ 0, on
the other hand, the fitness of skillful individuals who exert no
teaching effort is w að Þ ¼ 1:31. In contrast, the fitness of skillful
individuals with a ¼ 10 is w að Þ ¼ 1:12. When r is low, the best
strategy is thus for skillful individuals to abstain from teaching.
In this case, the optimal value of a is zero even though the direct
cost of teaching is null. This is because of the opportunity cost
inherent to teaching (Fig. 3, right).

4. Discussion

The evolution of teaching can radically alter cultural and
genetic evolutionary trajectories of social species. Here, we pro-
vided a new model that integrates cognitive and evolutionary
aspects of information sharing by combining recent work in cogni-
tive science and evolutionary theory applied to the spread and per-
sistence of a social trait. In this model, we account for the fact that



Table 2
Payoffs for two skills. Payoffs for all available data points in the example given in Fig. 1.

di ej; bk
� �

pi di ej; bk
� �

pi

d1 e1; b1ð Þ 2 d5 e1; b2ð Þ 0
d2 e2; b1ð Þ 0:25 d6 e2; b2ð Þ 0:25
d3 e3; b1ð Þ 0 d7 e3; b2ð Þ 1
d4 e4; b1ð Þ 2 d8 e4; b2ð Þ 0:25

Fig. 3. The optimal a depends on r and k. When k ¼ 0:05, the direct cost of teaching is too high and no effort is thus optimal regardless of r (left). When k ¼ 0:01, the direct cost
of teaching takes intermediate values and so a finite effort is optimal for r� > 0:72 but below this threshold minimal effort is optimal (center). But when k ¼ 0, skillful
individuals do best by either putting no effort (r� < 0:61) or by putting as much effort as possible into teaching (r� > 0:61). This is due to the opportunity cost of teaching
(right). Shown are results for payoffs given in Table 2.
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individuals with transmissible skills can behave in ways that can
make learners more or less likely to acquire the skill—i.e., by choos-
ing different data points). We consider the evolution of this teach-
ing effort, quantified by the variable a in our model.

A boundary case of our model is that there is no information
contained in the behavior of the skillful individual, which happens
when a ¼ 0. In this boundary case, ‘‘skillful” individuals simply
choose data points (behavior-environment pairs) randomly
amongst all possible pairs, and transmit no information. However,
this boundary case represents a discontinuity: when a ! 0 (but
not exactly zero), skillful individuals’ behavior converges to choos-
ing only data points that are compatible with their skill. In other
words, skillful individuals with vanishingly small teaching effort
will share information on what behavior to perform in a given
environment passively, just by executing behavior that is consis-
tent with their skill. In Kline’s (Kline, 2015) taxonomy of teaching
mechanisms, this is closest to the case of social tolerance: by toler-
ating the presence of others and allowing them to observe, skillful
individuals teaching simply by carrying out the appropriate behav-
ior. In contrast, when a > 0, skillful individuals go above and
beyond merely performing behavior consistent with their skill. In
this case, skillful individuals preferentially provide learners with
data that facilitate learning. Examples of this are what Kline calls
opportunity provisioning and stimulus enhancement. When
a P 1, skillful individuals chose what data to display with proba-
bility that is at least proportional to how naive individuals would
learn when exposed to the data. In Kline’s terminology, this might
corresponds to direct forms of teaching, such evaluative feedback
and direct teaching.

In our evolutionary model, we assume that skillful individuals
get indirect fitness benefits from the increased probability of learn-
ing by the learners. In this setting, we can identify conditions under
which selection favors the spread of positive teaching effort. Selec-
tion favors a higher teaching effort when the relatedness between
skillful individuals and naive learners is sufficiently high, sharing
7

costs are sufficiently low, and the benefit of transmitting the skill
is sufficiently high. Importantly, our model also identifies two
kinds of costs of teaching: the first is the direct cognitive or meta-
bolic cost in taking the informational need of others into account,
while the second is the opportunity cost in sharing information
instead of exploiting it to increase one’s own fitness. We thus show
that teaching entails an ‘‘explain-exploit” trade-off that is similar
to the explore-exploit trade-off in information acquisition
(Rendell et al., 2010), adding a new dimension to potential costs
of teaching not explicitly considered in previous models (Fogarty
et al., 2011; Castro and Toro, 2014).

Our model is in keeping with Sterelny’s (Sterelny, 2012) dis-
cussion of the evolutionary trajectory of modern humans. For
Sterelny, the first evolutionary step towards the information-
rich ecological niche that we came to occupy was the formation
of relatively large social groups. By living and foraging in groups,
our ancestors could share information about their skills with
others simply by tolerating the presence of onlookers. In our
model, this corresponds to the case where a ! 0 so that skillful
individuals share information with others simply by performing
behavior in accordance with their skill. As groups grew more
cooperative, large, and cohesive, higher levels of information
sharing became possible through opportunity provisioning. This
corresponds to the case where a > 0 and skillful individuals pro-
vide learners with higher-quality information. But as Sterelny
points out, it was not until the crudest form of communication
arose that high-volume and high-fidelity forms of teaching finally
spread. This could correspond to aP 1, as skillful individuals
choose what behavior to perform with probability that is at least
proportional to how naive individuals would learn when exposed
to the behavior. Following Aaby and Ramsey’s (2020) tripartite
taxonomy, teaching can therefore be understood as a form of ‘‘ex-
ternal” niche construction when the skillful individual alters the
naive individual’s learning environment to serve a pedagogical
function.
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But our model results also highlight some additional subtleties
to Sterelny’s insight that advances in how our ancestors shared
information with one another favored the spread of better infor-
mation gathering, creating a positive feedback loop betweenmech-
anisms for sharing and gathering information. Our model shows
that either the direct cost or the opportunity cost of teaching can
act as brakes to this feedback loop, limiting the evolution and
strength of teaching and highlighting that the co-evolution of cul-
tural and biological traits need not always be synergistic
(Ghirlanda et al., 2010). More precisely, our model indicates that
even when the direct cost of teaching is negligible, teaching can
still result in an opportunity cost that threatens to dampen the
positive feedback loop between sharing and gathering information.
As teaching can take the form of an altruistic behavior either
because of the direct or indirect cost involved, our model results
could therefore help explain why extreme forms of teaching—such
as evaluative feedback and direct instruction—are a relatively rare
and evolutionarily recent phenomena in the animal realm. In fact,
such forms of teaching are mostly absent in non-human animals
but common in human societies in the form of not only formal
education, but also jokes, scolding, and gossip (Bell and
Hernandez, 2017; Wiessner, 2014).

More generally, our model sheds new light on current debates
about the role of teaching in human cultural evolution. For all
the similarities between human and non-human culture, human
culture seems to be unique in that high-fidelity and high-volume
social learning leads to a series of adaptations that gradually build
on one another. This is what many now term ‘‘cumulative culture”,
though the concept remains contentious—see Mesoudi and
Thornton (2018) for a review and discussion. To explain the cumu-
lative character of human culture, some invoke our capacity for
teaching (Burdett et al., 2018; Caldwell et al., 2018; Dean et al.,
2012). Others disagree, denying that teaching could play such a
prominent role in cumulative cultural evolution (Zwirner and
Thornton, 2015; de Oliveira et al., 2019).

However, both camps in this debate seem to be narrowly con-
cerned with a very particular and extreme forms of teaching:
teaching via evaluative feedback or direct instruction. In contrast,
our model highlights that it is possible to teach others without
direct teaching as teaching effort comes in degrees. In fact, it is
likely that human culture benefits especially from our capacity to
teach in a variety of different forms. Both sides in the debate about
the importance of teaching in cumulative culture might therefore
do well to consider different forms of teaching, especially less
extreme ones.

In conclusion, by linking the emergence of cumulative culture
with the cognitive basis of information sharing in humans, our
model therefore blends different ‘‘grains of analysis” in the study
of cultural change (Godfrey-Smith, 2012). In doing so, our model
helps advance the synthesis between micro- and macro-scale pro-
cesses in cultural evolution in the context of the evolution of teach-
ing (Mesoudi, 2011). Continuing this synthesis will likely reveal
more interesting insights on the evolution, functioning, and conse-
quences of teaching.
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